
XQuery Full Text Implementation in BaseX

Christian Grün, Sebastian Gath, Alexander Holupirek, and Marc H. Scholl

<firstname>.<lastname>@uni-konstanz.de

Department of Computer & Information Science
Box D 188, 78457 Konstanz, Germany

University of Konstanz

Abstract. LONG PAPER. BaseX is an early adopter of the upcom-
ing XQuery Full Text Recommendation. This paper presents some of the
enhancements made to the XML database to fully support the language
extensions. The system’s data and index structures are described, and
implementation details are given on the XQuery compiler, which sup-
ports sequential scanning, index-based, and hybrid processing of full-text
queries. Experimental analysis and an insight into visual result presen-
tation of query results conclude the presentation.

1 Introduction

XML has been widely adopted as an exchange and storage format for textual
data in both research and industry. The existence of more than fifty XQuery
processors clearly underlines the large interest in querying XML documents and
collections. While many of the database-driven implementations offer their own
extensions to support full-text requests, the upcoming XPath and XQuery Full
Text 1.0 Recommendation [1] will satisfy the need for a unified language ex-
tension and will most probably attract more developers and users from the
Information Retrieval community. The recommendation offers a wide range of
content-based query operations, classical retrieval tools such as Stemming and
Thesaurus support, and an implementation-defined scoring model that allows
developers to adapt their database to a large variety of use-cases and scenarios.

In this paper, we present aspects of the implementation of XQuery Full Text
in the database system BaseX [14, 15, 17]. GalaTex [7] and Quark [4] were two
systems that supported early versions of the proposal, and BaseX is, to the best
of our knowledge, the first implementation to fully support all features of the
specification. More implementations are expected to follow in the near future as
soon as the recommendation has reached its final state.

A simple full-text test looks nearly the same as a General Comparison in
XQuery [5]. An ftcontains expression can get pretty large, however, if the right-
hand side is extended by match options, positional filters or logical connectives:

/library/book[content ftcontains ("biogenetics" ftor
("biology" ftand "genetics" ordered distance at most 5 words))

language ’en’ with stemming with thesaurus default]

Due to the complexity of the language extension, this paper will focus on
its core features. Special attention will be given to the discussion of different
execution plans. As full-text requests heavily depend on index structures, the
query compiler will try to use a full-text index whenever possible. If this strategy
fails, a sequential approach is chosen. A third, hybrid variant takes advantage of
the index, but processes all XML nodes sequentially.

While iterative query processing (streaming) adds some overhead to simple
database operations, it clearly wins when large intermediate and small final result
sets are to be expected. As all XQuery expressions in BaseX are implemented in
an iterative manner, the iterative approach was not only maintained for all full-
text operators, but even pushed down to the index methods and structures. This
way, execution times for small results will not suffer from bulky index results.

Many full-text queries produce large result sets with long textual contents.
Since, from the beginning, BaseX supported visual access to data and query
results, the graphical frontend was extended to meet the demand of visualizing
large text bodies and results in a compact way.

The paper is organized as follows: Section 2 presents the storage and index
structures that allow for efficient query evaluation. The sequential, index-based
and hybrid execution strategies are discussed in Section 3, and details on iterative
query evaluation are given in Section 4. Some performance results in Section 5
analyze execution times of the evaluation variants. Section 6 gives insight into
the visual presentation of full-text results; it is concluded by the summary in
Section 7.

2 Database Architecture

2.1 Document Storage

While many different XML storage models have been discussed over the last ten
years—and none of them has superseded the others—the Pre/Post encoding and
its variants have proven to generally yield good performance. It was introduced
by Grust [16] and successfully applied by the MonetDB/XQuery implementa-
tion [6]. Several variations of this encoding can be used to faithfully represent
the XML structure. In MonetDB, for example, XML nodes are mapped to a
pre/size/level triple. The attributes represent a node identifier, the number
of descendant nodes and the depth of a node inside the document tree.

As shown in Figure 1, BaseX stores a pre/dist/size combination for each
node. The size attribute is mainly used to speed up child and descendant traver-
sals, whereas dist contains the distance to the parent node, allowing access to
the parents and ancestors of a node in constant time. As we will see later, index-
based queries benefit greatly from fast access to ancestor nodes. A relative parent
encoding (the distance) was favored over an absolute reference as it has shown
to be update-invariant, i.e., sub-trees keep their original distance values if they
are moved to another place or inserted in a new document.

Document:

<A>

xw xy

<C>

<D>x</D>

<D>xy xw</D>

<D>x y</D>

</C>

<E>y x</E>

Tree with pre values:

1

A

2

B
mmmmmmmmmm

3

xw xy

11

E
QQQQQQQQQQ

12

y x

4

C

5

D
|||||

6

x

7

D

8

xy xw

9

D
BBBBB

10

x y

Mapping:

pre dist size data

1 1 11 A
2 1 1 B
3 1 0 xw xy
4 3 6 C
5 1 1 D
6 1 0 x
7 3 1 D
8 1 0 xy xw
9 5 1 D

10 1 0 x y
11 10 1 E
12 1 0 y x

Fig. 1. Document Encoding in BaseX

The main advantage of a flat storage of XML documents is that documents
can be sequentially parsed—a property that is particularly useful if many sub-
sequent nodes have to be accessed, which is the case, e.g., for traversals of the
descendant step. Next to that, the final table contains no variable-sized entries.
As tags and attribute names are indexed and texts and attribute values are sep-
arately stored, tuples can be stored with a fixed size, and the memory/disk offset
of XML nodes can be calculated easily and accessed in constant time [14].

A closer look at the table attributes reveals some specific properties for each
node kind (element, attribute, text, etc.):

• the size value of text and attribute nodes will always be 0
• the number of distinct tag and attribute names is much smaller than the

number of document nodes
• as elements have a limited number of attributes, the dist value of attribute

nodes is small
• attributes, however, consist of two values (attribute name and value)

Based on these and some other observations, the storage of XML node tuples
can be compacted. This compression procedure further speeds up node access
by minimizing the tuple sizes.

The presented storage was simplified for the sake of clarity. The actual storage
model includes some other data structures, such as a directory to reference the
first pre values of the disk-based table blocks [14]. This extension is needed to
support update operations on the storage. The general access time, however, is
not affected by the extension. To get even better performance, the database table
can be completely kept in main-memory—a feature which is obviously limited
by the amount of available memory.

2.2 Index Structures

The presented storage is extended by a number of index structures. Name in-
dexes convert variable-sized tag and attribute names as well as namespaces to
fixed-size numeric references. An additional path summary maintains informa-
tion on all distinct location paths in an XML document [3, 12]. Both indexes are

enriched by statistical data (number of occurrences, minimum and maximum
values of attached text nodes/attribute values), which are interpreted by the
query optimizer, as shown in Section 3. Value indexes reference all text nodes
and attribute values of a document. They are used to speed up content-based
queries. A classical example for the application of a value index is the combina-
tion of a location path filtered by an equality predicate: /A/C[D = "x"]. Query
evaluation can be skipped at an early stage, if a value index indicates that a
query will yield zero hits. Among others, the attribute index is beneficial to
evaluate the XQuery fn:id() and fn:idref() functions.

(root)

6,0|10,0|12,1
x

zzzzzz

3,0|8,1
w

�����

3,1|8,0
y

99999 10,1|12,0
y

9999

Fig. 2. Compressed Trie: charac-
ters with pre,pos value pairs

To capture the challenges of XQuery Full
Text, all text nodes are tokenized, normal-
ized and stored in an additional full-text
index. The tokenization process is further
specified in Section 4.1 of the language spec-
ification [1]. Normalization includes the re-
moval of diacritics, a case insensitive repre-
sentation, optional stemming, etc. A Com-
pressed Trie [2, 10] was implemented that,
apart from simple token requests, supports
flexible operations such as range, wildcard
and fuzzy queries. Figure 2 shows a trie struc-
ture (simplified) for the document from Figure 1. Each node contains characters
of the indexed token, and the pre,pos value pairs (pre0,pos0|. . .|pren,posn)
identify all occurrences of the token. The pre value references the text nodes
stored in the database table; the position within the text node is remembered
as pos value. As the index is built in document order, all stored pre,pos values
are automatically sorted—a property which comes in handy, as we will see in
Section 4.

Whereas many tries are designed to work in main memory, the presented
index exclusively operates on flattened and compressed array structures. This
way, it can be directly stored to disk, and access time and memory consump-
tion is minimized. As some index requests—such as a count() on the number of
results—will only access meta data, structural and reference data are stored in
separate containers. The structural container contains the indexed token charac-
ters, references to child nodes, the number of results, and offsets to the reference
container which contains all pre,pos pairs. More implementation details can be
found in [11].

3 Full-text Evaluation Strategies

BaseX employs three different evaluation strategies for full-text queries: sequen-
tial scanning, index-based processing with path inversion and a hybrid approach.
All of them are presented here, along with a decision framework to select the
best mode. The following queries are used to illustrate the query evaluation
strategies:

Q1: /A/C[D/text() ftcontains "x"]
Q2: //D[text() ftcontains "x"]
Q3: //*[text() ftcontains ftnot "x"]

3.1 Sequential Scanning

QueryPlan

LocationPath

Root child::A child::C

FTContains

LocationPath "x"

child::D child::text()

Fig. 3. Query Plan: sequential
processing of Query Q1

Query Q1 consists of child steps and a predi-
cate with an ftcontains expression. The cor-
responding sequential query plan (simplified)
is depicted in Figure 3. The evaluation requires
a sequential scan of the document. The Loca-
tionPath expression starts from the root node
and traverses all child nodes. Each A element
is passed on to the next child step, and the re-
sulting C elements are filtered by the FTCon-
tains expression. The left-hand LocationPath
yields all text() nodes of D elements, which
are checked for the token "x".

Obviously, with increasing document size, the sequential scan becomes a
bottleneck as all nodes addressed by the query have to be touched at least once.

3.2 Index-based Processing with Path Inversion

In XML databases, a large variety of index types exists. Content (or value)
indexes facilitate direct access to text nodes in a document, and different variants
are found in practice:

• Some databases reference results on the document level. This is often done
if XML is stored in relational database columns. Queries on many small
documents can be accelerated by this approach, while there is no benefit for
single and large documents.

• Certain location paths can be pre-selected for being indexed. While this
seems promising at first glance, it often fails when queries are nested or
getting more complex. Moreover, users need explicit knowledge about the
existing index structure.

• Implementation-defined XQuery functions allow for a direct index access.
Knowledge on the database internals is needed, and, next to that, a query
compiler will not benefit from the indexes, as the user alone decides whether
the index is to be used.

To support arbitrary full-text expressions, we chose to index all text nodes by
default, regardless of their position in the document structure. As demonstrated
in the following, the query optimizer will rewrite and invert location paths and
predicates whenever an index access is possible.

In Figure 4, the index-based execution plan of Query Q1 is depicted. In con-
trast to the sequential scanning mode, which evaluates queries from the docu-
ment root down to leaf nodes, a bottom-up approach is pursued by first accessing

the full-text index and secondly traversing the path back from the leaf nodes to
the document root.

QueryPlan

LocationPath

FTIndex parent::D parent::C

"x" LocationPath

parent::A parent::doc()

Fig. 4. Query Plan: index-based pro-
cessing of Query Q1

First of all, the FTIndex opera-
tor returns the references of all text
nodes containing the token "x". Next,
parent elements D and C are selected.
Finally, the ancestor path of the re-
maining nodes (including the docu-
ment node) is checked to dismiss re-
sults which do not comply with the
original query path. Path inversion
is possible due to the symmetries of
certain XPath axes. Forward-looking,
top-down variants have been discussed
in detail in [20], and some of them are
shown in Table 1. By extending them
to multiple location steps, they serve
well to dynamically rewrite a large
number of location paths.

Path Equivalent Path

/descendant-or-self::m/child::n /descendant::n[parent::m]

/descendant-or-self::m/descendant::n /descendant::n[ancestor::m]

p[ancestor::m]/self::n p/self::n[ancestor::m]

p/following::m/descendant::n p/following::n[ancestor::m]

Table 1. Location paths and their equivalents

QueryPlan

LocationPath

FTIndex parent::D

"x"

Fig. 5. Query Plan:
index-based processing
of Query Q2

The second Query Q2 (//D[text() ftcontains
"x"]) introduces a descendant-or-self and child step,
which can be merged, in this case, to a single
descendant::D step. Queries with descendant steps
will be executed more slowly by some query engines, as
virtually all document nodes have to be touched and
checked for its node kind and tag name. The optimized,
index-based execution plan in Figure 5, however, is very
compact: as the descendant step in the original query
selects all D elements in the document, regardless of
their path to the root node, the ancestor and docu-
ment test can be completely skipped. As the additional
ancestor traversal, which has to be evaluated for each
single node, takes additional time, this query will be
executed even faster than Q1.

Value indexes can be used to find out, where a text is found in a document,
but not to find places of its absence. If a full-text query contains an ftnot

expression, the option to use an index access with consecutive path inversion
turns out to be useless.

QueryPlan

LocationPath

Root descendant::*

FTIndexContains

LocationPath FTIndexNot

child::text() FTIndex

"x"

Fig. 6. Query Plan: hybrid
processing of Query Q3

However, the index can still be of value in
a sequential traversal, as the tokenization and
normalization of all touched text nodes can take
much longer than a simple reference test in a
modified FTNot operator implementation.

3.3 Hybrid Processing: Sequential
Evaluation with Index Usage

Figure 6 shows the resulting query plan
for Query Q3 (//*[text() ftcontains ftnot
"x"]). It resembles the sequential execution
plan—except for the full-text expressions, which
are all index-aware. If the FTIndex operator is
called for the first time, the index is accessed
once. FTIndexNot checks for each node if it is
not part of the index result, and FTIndexCon-
tains works similar to the conventional FTCon-
tains operator, but basically avoids tokenizing
the current node. If the incoming nodes are guar-
anteed to be sorted, FTIndexNot will operate
even faster. As all index references are sorted
as well (see Section 2.2), it can completely run
in an iterative manner.

3.4 Choosing the Proper Processing Strategy

A two-step model is used by the query compiler for choosing the proper process-
ing strategy. In the first step, it is decided whether it is possible and efficient to
use the index, while the second step rewrites the affected operators in a positive
first case. The tag/attribute index and path summary are used to perform some
basic cost estimations, which influence the decision for or against index access.
The number of expected text nodes, their average text length (which influences
the time for tokenizing text nodes) and their position in the path summary are
considered as well as the number of index results, which can be requested from
the full-text index. If a query potentially allows performing several index re-
quests, it can be cheaper to only access the index once and process the other
predicates sequentially. Query execution can be completely skipped if the index
indicates that a term will yield no results at all.

For the sake of simplicity and to present but the core functionality, we have
limited the discussion to the optimization of basic location paths. A slightly more
complex query is shown in Figure 7. It contains a FLWOR expression, a general
comparison and an ftcontains expression with an additional ftand connective.
The query plan illustrates that the available indexes can be applied here as well.

4 Iterative Evaluation of XQuery Full Text

4.1 Sequential Evaluation

Iterative/pipelined query evaluation is a general database concept [13] which
is applied in a number of other XQuery implementations [8, 9, 18]. In contrast
to a conventional, set-based approach, items are processed one-by-one, which
guarantees constant memory consumption. The pipeline is only broken by so-
called blocking operators that need their complete input, which is the case for
sorting, for instance. Iterative evaluation can add some minimal overhead, but
it yields particularly good performance when the creation of large intermediate
results can be avoided, that are later reduced to a small, final result set.

QueryPlan

FLWOR

For

$p
Return

LocationPath

InterSection
self::

node()

LocationPath LocationPath

TextIndex
parent::

country

parent::

address

parent::

person

"United States"

FTIntersection
parent::

name

parent::

person

FTIndex FTIndex

"nikil" "stolovitch"

LocationPath

parent::

people

parent::

site

parent::

doc()

LocationPath

Variable

$p

child::

emailaddress

let $auction := doc(’XMark.xml’)

return

for $p in $auction/site/people/person

where $p/address/country = ’United States’

and $p/name ftcontains ’Nikil’ ftand

’Stolovitch’ case insensitive

return $p/emailaddress

Fig. 7. XQuery with FLWOR expression

Although the internal XQuery Full Text data model is complex, as scoring
values are calculated and word positions are passed on to evaluate so-called posi-
tional filters (such as word order or distances, see [1] for details), all expressions
can be evaluated in an iterative manner. The FTAnd, FTOr and FTUnaryNot
expressions are implemented similarly to their XQuery counterparts; both pro-
cessing modes handle one node per iterator step. Consider, e.g., the FTOr it-
erator that merges nodes with equal pre values and returns the node with the
smallest pre value and its corresponding pos values. The full-text references of
the remaining operands have to be temporarily cached as iterators return data
only once. Additionally, the FTMildNot operator, which has no XQuery equiv-
alent, has to check whether one occurrence of the first operand is not followed
by any other occurrence of the remaining operands.

4.2 Index-Based Full-Text Iterator

As described in Section 2.2, the full-text index references pre and pos values for
each index term. Querying the index means that all references are fetched from
disk and returned via an iterator. But in many cases, the entire full-text data
is not needed to successfully evaluate a query. Therefore, the iterator concept
was pushed down to the index structures. The iterative implementation of the
FTIndex operator works as follows: After initializing the iterator with the struc-
tural data, all data for the first node reference (pre0) is read, i.e., all pre,pos
value pairs from pre0,pos0 to pre0, posn are processed and returned. In the
next iteration, the data stored for the reference pre1 is read and returned, and
so on. This process continues as long as more index results are requested, or all
references have been returned.

4.3 Iterator Trees: Processing Non-Trivial Index Requests

Iterative index processing is simple and straightforward, as long as single index
terms are requested. If the index, returns results for wildcard queries, for in-
stance, the references of several index terms have to be merged and returned. As
all index references (i.e., their pre value) are sorted by document order, the iter-
ative approach can easily be extended to an arbitrary number of index iterators
and a union expression on top of them. Each single index access is managed by
an index iterator. It keeps the offset and number of pre,pos value pairs stored
for an index token.

The following wildcard example is based on the introductory XML document
and full-text index shown in Figures 1 and 2. For each index hit, which is recur-
sively matched by the trie algorithm, an index iterator is created. The resulting
index tree is evaluated every time an index result is requested. The pre,pos
value pairs with the smallest pre value are merged and returned.

The following example illustrates the presented approach. The full-text query
//*[text() ftcontains "x.*" with wildcards] yields all elements with a
text node that contains a token starting with the character "x". In our example,
three tokens (x, xw, xy) match the wildcard expression. The wildcard algorithm
creates an index iterator tree, which is depicted in Figure 8.

6,0|10,0|12,1
x

�������

????????

3,0|8,1
xw

�������

3,1|8,0
xy

???????

3,0|3,1

6,0|10,0|12,1
x

������

??????

8,1

xw
�������

8,0

xy
???????

6,0

10,0|12,1
x

������

???????

8,1

xw
�������

8,0

xy
???????

Fig. 8. Index iterator for //*[text() ftcontains "x.*" with wildcards]

Each iterator, which represents one single token, returns results in the known
format pre0,pos0|. . .|pren,posn. At the first step, the smallest pre values have
to be obtained. Therefore, each node of the iterator tree returns its smallest

pre value and the corresponding pos values. Next, the pos references of equal
pre values are merged. As shown in the figure, the root node now contains the
minimum pre value 3 and the merged pos values 0 and 1. The next step will
move pre value 6 to the top. After that, the second and third iterator will return
their values for pre value 8, and the index tree will be reduced to a single iterator,
which will return pre values 10 and 12.

5 Experimental Analysis

The following tests demonstrate the performance gains by applying indexes to
full-text querying. All tests were performed with BaseX 5.61. We used a 2.3 GHz
Intel Xeon CPU with 32 GB RAM as hardware and Suse Linux 10.2 and Java
1.5.0.16 as software. Four XMark instances (sized 11 MB, 111 MB, 1 GB and 11
GB) were generated and used as query input.

Query

Q1 doc(’xmark’)//keyword[text() ftcontains ’barrel’]

Q2 for $mail in doc(’xmark’)/site/regions/*/item/mailbox/mail

where $mail//text/text() ftcontains ’seeking.*’ with wildcards

return $mail/from

Q3 for $item in doc(’xmark’)/site/regions/*/item

where $item//listitem/text/text() ftcontains ftnot ’preventions’

return <result>{ $item/location/text() }</result>

Table 2. Tested queries

The three queries in Table 2 are supposed to summarize the discussed query
rewritings. Query Q1 contains a simple descendant step and an ftcontains
expression. Query Q2 uses a number of child steps to address the relevant text
nodes, and the full-text expression is extended by a wildcard option. An ftnot
operator is used in the third query Q3.

Query 11 MB 111 MB 1 GB 11 GB
Q1: Size 0,2 0,7 6 60
Q2: Size 1,5 14 118 1190
Q3: Size 16 165 1656 16602
Q1: Sequential 0.116 1.109 11.03 109.8
Q1: Index 0.001 0.003 0.017 0.128
Q2: Sequential 0.302 2.964 29.39 292.3
Q2: Index 0.006 0.041 0.396 3.831
Q3: Sequential 0.138 1.383 13.43 132.3
Q3: Hybrid 0.074 0.721 7.355 75.15

Table 3. Result size in KB, execution
times in seconds

All performance results are listed in
Table 3 and illustrated in Figure 9. The
times represent the average over several
runs (5-100 runs, depending on the doc-
ument size); they include the time for
parsing, compiling and evaluating the
query as well as printing the result. The
boxes show the result sizes in kilobytes.

As expected, all index-based queries
yield better results than their sequential
equivalents. The index-based version of
Q1 is evaluated fastest, as the resulting query plan (which is similar to Figure 5)

1 Open-source, available at http://www.basex.org.

1000

10000

100000

10

100

Q1: Size

Q2: Size

Q3: Size

Q1: Sequential

10

100

1000

0,1

1

10

11 MB 111 MB 1 GB 11 GB

Q1: Index

Q2: Sequential

Q2: Index

Q3: Sequential

0.001 0.1

0.01 1Q3: Hybrid

Fig. 9. Performance results. Boxes/right axis: result size in KB, lines/left axis: execu-
tion time in seconds

only contains the index access and a parent step. The scalability is sub-linear,
as the index version is about 1000 times faster than the sequential version with
the 11 GB input, compared to a factor of 100 for the 11 MB input. Q2 adds
some overhead with the wildcard operator, and the larger result size amounts
to a virtually linear execution time for both the sequential and the index-based
approach. Query Q3 demonstrates the potential of the hybrid query evaluation.
As tokenization of text nodes can be avoided, index-supported querying is about
twice as fast as pure sequential processing. In spite of the large result size, the
hybrid approach is still faster than the pure sequential solution for Query Q1.
Documents with larger text nodes (such as, e.g., the Wikipedia XML instances2)
will yield even better results if text tokenization can be avoided.

As the performance results indicate, there is a clear relationship between
the execution times and the data size. As larger XML instances yield larger
result sets, it is worth adding that the sequential and hybrid execution is mainly
dependent on the size of the input document, whereas the index-based variant
exclusively depends on the size of the query result.

6 Visualization of XML and Full-Text Results

Since the first release, BaseX offers a graphical frontend to visually explore
content and structure of stored XML data [15, 17]. Figure 10 (background) shows
a Wikipedia fragment using the Treemap visualization [21]. Each element is
drawn as a rectangle and the element tag is printed in the upper left area of
this rectangle. The inherent structure of the instance is clearly recognizable:
A starting siteinfo element containing some meta data, which is followed by
several page elements each corresponding to a Wikipedia article. The structure
of the page elements is good to grasp as well: page elements contain a title,
id and revision element, which again contains elements, for instance the text
element storing the full-text article. The space-filling treemap often allows the
viewer to comprehend the complete structure of a document at a glance. By

2 Available at http://download.wikimedia.org

interacting with the treemap, e.g., zooming into a subarea, a higher level of
detail can be achieved. As such, an explorative browsing approach may be used
to obtain further details about the data instance. Rectangles corresponding to
result nodes of a query are highlighted using a contrasting color code.

Fig. 10. Treemap visualizations of XML data.

It is in the nature of full-text queries to often produce large result sets with
long textual contents. Our standard text visualizations have shown to be insuffi-
cient in terms of compact result presentation and general overview over content
and structure. We chose to enhance the treemap visualization by a dynamic
abstraction layer using token/sentence thumbnails in combination with full-text
tooltips to overcome these deficiencies.

As previously discussed, full-text operators report the pre value and the
token position pos for each search term in a full-text query. Leveraging such
information, a visualization can provide a more compact and space-preserving
treemap layout by using thumbnail representations for tokens or, at a higher
level, sentences. The approach is straightforward. Whenever there is enough
space to place the original text into a rectangle, it is displayed as usual. If this is
not the case, tokens are replaced by thumbnails, following an approach by Kau-

gars [19]. The length of a thumbnail correlates with the size of the represented
text token. Line breaks between tokens are preserved.

Fig. 11. Full-text thumbnail and tooltip representation.

Figure 11 illustrates the thumbnail representation. As the textual node of
the author element fits into the corresponding rectangle, it is displayed in its
readable format. The thumbnail representation is used for the text nodes of
the p elements. The black thumbnail entities denote periods or other sentence
terminators. As mentioned, the length of a thumbnail is relative to the length of
the represented token, as such the structure of the sentence is preserved. Once
the mouse cursor is moved over a thumbnail, the original text is displayed in a
tooltip.

Figure 10 (foreground) displays an area of 35 elements in a Wikipedia in-
stance. All occurrences of the term ”the” are highlighted. The figure demon-
strates another abstraction layer (representing a whole sentence by a thumb-
nail) of the visualization procedure. In one of the treemap rectangles, there is
enough space to fit in the textual content (”redirect alexander the great r from
camelcase”). However, it is yet too narrow to display the tokens ”alexander” and
”camelcase” completely, so they are truncated to ”alexan..” and ”camelc..”. In
the comment elements, the token thumbnail representation is chosen. Once more,
black rectangles indicate sentence delimiter. For the text elements, the sentence-
based thumbnail abstraction is chosen. Hereby we can observe two characteris-
tics: For text passages of median length the original sentences are still good to
be recognized. The longer text passages are, the darker they appear due to the
increasing number of delimiters. The structure of the text, however, is preserved
in all abstraction levels.

Using dynamic thumbnail representation for full-text bodies allows space-
saving visual representations of large text bodies in a small display area. Com-
bined with tooltips, which additionally display preceding and following text
blocks of the selected token, it is possible to sequentially read and browse through
the compacted, thumbnailed text, as illustrated in Figure 12.

7 Summary

We presented aspects of the architecture of the XQuery Full Text Recommenda-
tion in BaseX, an open-source DBMS developed at U Konstanz. As one of, if not
the, first complete implementation of all language features, our system provides

Fig. 12. Split visual result presentation of a full-text query. Above: a sentence based
thumbnail representation with highlighted full-text tokens. Below: the textual repre-
sentation in the original document.

simple sequential query processing algorithms that allow for pipelined process-
ing of operator sequences as well as (full-text) indexes to speed-up search. In
addition, a hybrid query execution strategy is employed whenever pure index-
based or sequential processing seems to promise only second-best performance.
Substantial query rewrite optimizations have already been incorporated, even
though BaseX does not yet involve a full-blown cost-based query optimizer try-
ing to always find the best possible plan.

Our initial performance evaluation proves perfect scalability of both, sequen-
tial and index-based execution plans. Actually, we were even able to take ad-
vantage of indexes for the evaluation of queries with negated full-text predicates
(Not expressions). Finally, BaseX’s visual querying interface and result display
has also been extended for full-text applications, such that matches w.r.t. full-
text predicates can be highlighted in query results. Several XML visualizations
are available in BaseX, e.g., the treemap that clearly show the document struc-
ture together with varying content detail, depending on document or result set
size. Using highlights and tooltips or split views, the system gives visual feedback
to the user as to where matching part of the XML document have been found.

Future work will include more subtle query optimization and index evaluation
strategies as well as additional functionality to cover language-specific full-text
features. Also, we plan to extend our visual querying interface and result display
with a variety of zoomable representations.

References

1. Sihem Amer-Yahia et al. XQuery and XPath Full Text 1.0. W3C Candidate Rec-
ommendation. http://www.w3.org/TR/xpath-full-text-10, May 2008.

2. Jun-Ichi Aoe et al. An Efficient Implementation of Trie Structures. Software –
Practice and Experience, 22(9):695–721, 1992.

3. Attila Barta et al. Benefits of Path Summaries in an XML Query Optimizer
Supporting Multiple Access Methods. In Proc. of the 31st VLDB Conference,
pages 133–144, Trondheim, Norway, 2005.

4. Anand Bhaskar et al. Quark: an efficient XQuery full-text implementation. In
Proc. of the ACM SIGMOD Conference, Demo Tracks, pages 781–783, Chicago,
Illinois, USA, 2006.

5. Scott Boag et al. XQuery 1.0: An XML Query Language. W3C Recommendation.
http://www.w3.org/TR/xquery, January 2007.

6. Peter A. Boncz et al. MonetDB/XQuery: a fast XQuery processor powered by
a relational engine. In Proc. of the ACM SIGMOD Conference, pages 479–490,
Chicago, Illinois, USA, 2006.

7. Emiran Curtmola et al. GalaTex: A Conformant Implementation of the XQuery
Full-Text Language. In Proc. of the 2nd XIME Workshop, Baltimore, Maryland,
USA, 2005.

8. Peter Fischer et al. MXQuery – a low-footprint, extensible XQuery Engine.
http://www.mxquery.org, 2009.

9. Daniela Florescu et al. The BEA/XQRL Streaming XQuery Processor. In Proc.
of the 29th VLDB Conference, pages 997–1008, Berlin, Germany, 2003.

10. Edward Fredkin. Trie Memory. J-CACM, 3(9):490–499, September 1960.
11. Sebastian Gath. Processing and Visualizing XML Full-Text Data. Master’s thesis,

University of Konstanz, Germany, 2009.
12. Roy Goldman and Jennifer Widom. DataGuides: Enabling Query Formulation and

Optimization in Semistructured Databases. In Proc. of the 23rd VLDB Conference,
pages 436–445, Athens, Greece, 1997.

13. Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM Computing
Surveys, 25(2):73–170, 1993.

14. Christian Grün et al. Pushing XPath Accelerator to its Limits. In Proc. of the 1st
ExpDB Workshop, Chicago, Illinois, USA, 2006.

15. Christian Grün et al. Visually Exploring and Querying XML with BaseX. In Proc.
of the 12th BTW Conference, Demo Tracks, pages 629–632, Aachen, Germany,
2007.

16. Torsten Grust. Accelerating XPath Location Steps. In Proc. of the ACM SIGMOD
Conference, pages 109–120, Madison, Wisconsin, USA, 2002.

17. Alexander Holupirek et al. BaseX & DeepFS: Joint Storage for Filesystem and
Database. In Proc. of the 12th EDBT Conference, pages 1108–1111, 2009.

18. Wolfgang Hoschek. Nux – an Open-Source Java toolkit for XML Processing.
http://acs.lbl.gov/nux, 2006.

19. Karlis Jekabs Kaugars. A Hierarchical Approach to Detail + Context Views. PhD
thesis, New Mexico State University, Las Cruces, NM, USA, 1998.

20. Dan Olteanu et al. XPath: Looking Forward. In Proc. of the XMLDM Workshop,
pages 109–127. Springer Verlag, 2002.

21. Ben Shneiderman. Tree Visualization with Tree-Maps: 2-d Space-Filling Approach.
ACM Trans. Graph., 11(1):92–99, 1992.

